On an integral-type operator from Qk(p,q) spaces to α-bloch spaces
نویسندگان
چکیده
منابع مشابه
AN INTEGRAL–TYPE OPERATOR FROM BLOCH SPACES TO Qp SPACES IN THE UNIT BALL
Let H(B) denote the space of all holomorphic functions on the unit ball B of Cn . Let α > 0 , f ∈ H(B) with homogeneous expansion f = ∑k=0 fk . The fractional derivative Dα f is defined as Dα f (z) = ∞ ∑ k=0 (k+1)α fk(z). Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0 . In this paper we consider the following integral-type operator
متن کاملOn an Integral-type Operator from Mixed Norm Spaces to Zygmund-type Spaces (communicated by Professor
This paper studies the boundedness and compactness of an integraltype operator from mixed norm spaces to Zygmund-type spaces and little Zygmund-type spaces.
متن کاملOn an Integral-Type Operator Acting between Bloch-Type Spaces on the Unit Ball
and Applied Analysis 3 Here H∞ ω denotes the weighted-type space consisting of all f ∈ H B with ∥ ∥f ∥ ∥ H∞ ω sup z∈B ω z ∣ ∣f z ∣ ∣ < ∞ 1.9 see, e.g., 23, 24 . Associated weights assist us in studying of weighted-type spaces of holomorphic functions. It is known that associated weights are also continuous, 0 < ω ≤ ω̃, and for each z ∈ B, we can find an fz ∈ H∞ ω , ‖fz‖H∞ ω ≤ 1 such that fz z 1/...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملGeneralized composition operators from logarithmic Bloch type spaces to Q_K type spaces
In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2011
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1103163p